Apollo  6.0
Open source self driving car software
lane_aggregating_evaluator.h
Go to the documentation of this file.
1 /******************************************************************************
2  * Copyright 2019 The Apollo Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  *****************************************************************************/
16 
22 #pragma once
23 
24 #include <string>
25 #include <vector>
26 
27 #include "torch/script.h"
28 #include "torch/torch.h"
29 
32 
37 namespace apollo {
38 namespace prediction {
39 
41  public:
46 
50  virtual ~LaneAggregatingEvaluator() = default;
51 
57  bool Evaluate(Obstacle* obstacle_ptr,
58  ObstaclesContainer* obstacles_container) override;
59 
63  std::string GetName() override { return "LANE_AGGREGATING_EVALUATOR"; }
64 
65  private:
71  bool ExtractObstacleFeatures(const Obstacle* obstacle_ptr,
72  std::vector<double>* feature_values);
73 
79  bool ExtractStaticEnvFeatures(
80  const Obstacle* obstacle_ptr, const LaneGraph* lane_graph_ptr,
81  std::vector<std::vector<double>>* feature_values,
82  std::vector<int>* lane_sequence_idx_to_remove);
83 
84  torch::Tensor AggregateLaneEncodings(
85  const std::vector<torch::Tensor>& lane_encoding_list);
86 
87  torch::Tensor LaneEncodingMaxPooling(
88  const std::vector<torch::Tensor>& lane_encoding_list);
89 
90  torch::Tensor LaneEncodingAvgPooling(
91  const std::vector<torch::Tensor>& lane_encoding_list);
92 
93  std::vector<double> StableSoftmax(
94  const std::vector<double>& prediction_scores);
95 
96  void LoadModel();
97 
98  private:
99  torch::jit::script::Module torch_obstacle_encoding_;
100  torch::jit::script::Module torch_lane_encoding_;
101  torch::jit::script::Module torch_prediction_layer_;
102  torch::Device device_;
103 
104  static const size_t OBSTACLE_FEATURE_SIZE = 20 * 9;
105  static const size_t SINGLE_LANE_FEATURE_SIZE = 4;
106  static const size_t LANE_POINTS_SIZE = 100; // 50m
107  static const size_t BACKWARD_LANE_POINTS_SIZE = 50; // 25m
108 
109  static const size_t OBSTACLE_ENCODING_SIZE = 128;
110  static const size_t SINGLE_LANE_ENCODING_SIZE = 128;
111  static const size_t AGGREGATED_ENCODING_SIZE = 256;
112 };
113 
114 } // namespace prediction
115 } // namespace apollo
Prediction obstacle.
Definition: obstacle.h:52
bool Evaluate(Obstacle *obstacle_ptr, ObstaclesContainer *obstacles_container) override
Override Evaluate.
Definition: obstacles_container.h:39
PlanningContext is the runtime context in planning. It is persistent across multiple frames...
Definition: atomic_hash_map.h:25
virtual ~LaneAggregatingEvaluator()=default
Destructor.
Obstacles container.
std::string GetName() override
Get the name of evaluator.
Definition: lane_aggregating_evaluator.h:63
Definition: evaluator.h:39
Definition: lane_aggregating_evaluator.h:40
Define the data container base class.