Apollo  6.0
Open source self driving car software
distance_approach_ipopt_cuda_interface.h
Go to the documentation of this file.
1 /******************************************************************************
2  * Copyright 2019 The Apollo Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  *****************************************************************************/
16 
17 /*
18  * @file
19  */
20 
21 #pragma once
22 
23 #include <vector>
24 
25 #include <omp.h>
26 
27 #include <adolc/adolc.h>
28 #include <adolc/adolc_openmp.h>
29 #include <adolc/adolc_sparse.h>
30 #include <adolc/adouble.h>
31 
32 #include <coin/IpTNLP.hpp>
33 #include <coin/IpTypes.hpp>
34 
35 #include "Eigen/Dense"
36 
37 #include "cyber/common/log.h"
38 #include "cyber/common/macros.h"
39 #include "modules/common/configs/proto/vehicle_config.pb.h"
45 #include "modules/planning/proto/planner_open_space_config.pb.h"
46 
47 #define tag_f 1
48 #define tag_g 2
49 #define tag_L 3
50 #define HPOFF 30
51 
52 namespace apollo {
53 namespace planning {
54 
56  public:
58  const size_t horizon, const double ts, const Eigen::MatrixXd& ego,
59  const Eigen::MatrixXd& xWS, const Eigen::MatrixXd& uWS,
60  const Eigen::MatrixXd& l_warm_up, const Eigen::MatrixXd& n_warm_up,
61  const Eigen::MatrixXd& x0, const Eigen::MatrixXd& xf,
62  const Eigen::MatrixXd& last_time_u, const std::vector<double>& XYbounds,
63  const Eigen::MatrixXi& obstacles_edges_num, const size_t obstacles_num,
64  const Eigen::MatrixXd& obstacles_A, const Eigen::MatrixXd& obstacles_b,
65  const PlannerOpenSpaceConfig& planner_open_space_config);
66 
67  virtual ~DistanceApproachIPOPTCUDAInterface() = default;
68 
70  bool get_nlp_info(int& n, int& m, int& nnz_jac_g, int& nnz_h_lag, // NOLINT
71  IndexStyleEnum& index_style) override; // NOLINT
72 
74  bool get_bounds_info(int n, double* x_l, double* x_u, int m, double* g_l,
75  double* g_u) override;
76 
78  bool get_starting_point(int n, bool init_x, double* x, bool init_z,
79  double* z_L, double* z_U, int m, bool init_lambda,
80  double* lambda) override;
81 
83  bool eval_f(int n, const double* x, bool new_x, double& obj_value) override;
84 
86  bool eval_grad_f(int n, const double* x, bool new_x, double* grad_f) override;
87  // eval_grad_f by hand.
88  bool eval_grad_f_hand(int n, const double* x, bool new_x, double* grad_f);
89 
91  bool eval_g(int n, const double* x, bool new_x, int m, double* g) override;
92 
94  bool check_g(int n, const double* x, int m, const double* g);
95 
100  bool eval_jac_g(int n, const double* x, bool new_x, int m, int nele_jac,
101  int* iRow, int* jCol, double* values) override;
102  // sequential implementation to jac_g
103  bool eval_jac_g_ser(int n, const double* x, bool new_x, int m, int nele_jac,
104  int* iRow, int* jCol, double* values);
105  // parallel implementation to jac_g
106  bool eval_jac_g_par(int n, const double* x, bool new_x, int m, int nele_jac,
107  int* iRow, int* jCol, double* values);
108 
114  bool eval_h(int n, const double* x, bool new_x, double obj_factor, int m,
115  const double* lambda, bool new_lambda, int nele_hess, int* iRow,
116  int* jCol, double* values) override;
117 
121  void finalize_solution(Ipopt::SolverReturn status, int n, const double* x,
122  const double* z_L, const double* z_U, int m,
123  const double* g, const double* lambda,
124  double obj_value, const Ipopt::IpoptData* ip_data,
125  Ipopt::IpoptCalculatedQuantities* ip_cq) override;
126 
127  void get_optimization_results(Eigen::MatrixXd* state_result,
128  Eigen::MatrixXd* control_result,
129  Eigen::MatrixXd* time_result,
130  Eigen::MatrixXd* dual_l_result,
131  Eigen::MatrixXd* dual_n_result) const;
132 
133  //*************** start ADOL-C part ***********************************
135  template <class T>
136  bool eval_obj(int n, const T* x, T* obj_value);
137 
139  template <class T>
140  bool eval_constraints(int n, const T* x, int m, T* g);
141 
143  void generate_tapes(int n, int m, int* nnz_h_lag);
144  //*************** end ADOL-C part ***********************************
145 
146  private:
147  int num_of_variables_ = 0;
148  int num_of_constraints_ = 0;
149  int horizon_ = 0;
150  int lambda_horizon_ = 0;
151  int miu_horizon_ = 0;
152  double ts_ = 0.0;
153  Eigen::MatrixXd ego_;
154  Eigen::MatrixXd xWS_;
155  Eigen::MatrixXd uWS_;
156  Eigen::MatrixXd l_warm_up_;
157  Eigen::MatrixXd n_warm_up_;
158  Eigen::MatrixXd x0_;
159  Eigen::MatrixXd xf_;
160  Eigen::MatrixXd last_time_u_;
161  std::vector<double> XYbounds_;
162 
163  // debug flag
164  bool enable_constraint_check_;
165 
166  // penalty
167  double weight_state_x_ = 0.0;
168  double weight_state_y_ = 0.0;
169  double weight_state_phi_ = 0.0;
170  double weight_state_v_ = 0.0;
171  double weight_input_steer_ = 0.0;
172  double weight_input_a_ = 0.0;
173  double weight_rate_steer_ = 0.0;
174  double weight_rate_a_ = 0.0;
175  double weight_stitching_steer_ = 0.0;
176  double weight_stitching_a_ = 0.0;
177  double weight_first_order_time_ = 0.0;
178  double weight_second_order_time_ = 0.0;
179 
180  double w_ev_ = 0.0;
181  double l_ev_ = 0.0;
182  std::vector<double> g_;
183  double offset_ = 0.0;
184  Eigen::MatrixXi obstacles_edges_num_;
185  int obstacles_num_ = 0;
186  int obstacles_edges_sum_ = 0;
187  double wheelbase_ = 0.0;
188 
189  Eigen::MatrixXd state_result_;
190  Eigen::MatrixXd dual_l_result_;
191  Eigen::MatrixXd dual_n_result_;
192  Eigen::MatrixXd control_result_;
193  Eigen::MatrixXd time_result_;
194 
195  // obstacles_A
196  Eigen::MatrixXd obstacles_A_;
197 
198  // obstacles_b
199  Eigen::MatrixXd obstacles_b_;
200 
201  // whether to use fix time
202  bool use_fix_time_ = false;
203 
204  // state start index
205  int state_start_index_ = 0;
206 
207  // control start index.
208  int control_start_index_ = 0;
209 
210  // time start index
211  int time_start_index_ = 0;
212 
213  // lagrangian l start index
214  int l_start_index_ = 0;
215 
216  // lagrangian n start index
217  int n_start_index_ = 0;
218 
219  double min_safety_distance_ = 0.0;
220 
221  double max_safety_distance_ = 0.0;
222 
223  double max_steer_angle_ = 0.0;
224 
225  double max_speed_forward_ = 0.0;
226 
227  double max_speed_reverse_ = 0.0;
228 
229  double max_acceleration_forward_ = 0.0;
230 
231  double max_acceleration_reverse_ = 0.0;
232 
233  double min_time_sample_scaling_ = 0.0;
234 
235  double max_time_sample_scaling_ = 0.0;
236 
237  double max_steer_rate_ = 0.0;
238 
239  double max_lambda_ = 0.0;
240 
241  double max_miu_ = 0.0;
242 
243  private:
244  DistanceApproachConfig distance_approach_config_;
245  PlannerOpenSpaceConfig planner_open_space_config_;
246  const common::VehicleParam vehicle_param_ =
247  common::VehicleConfigHelper::GetConfig().vehicle_param();
248 
249  private:
250  //*************** start ADOL-C part ***********************************
251  double* obj_lam;
252  unsigned int* rind_L; /* row indices */
253  unsigned int* cind_L; /* column indices */
254  double* hessval; /* values */
255  int nnz_L = 0;
256  int options_L[4];
257  //*************** end ADOL-C part ***********************************
258 };
259 
260 } // namespace planning
261 } // namespace apollo
bool eval_h(int n, const double *x, bool new_x, double obj_factor, int m, const double *lambda, bool new_lambda, int nele_hess, int *iRow, int *jCol, double *values) override
void finalize_solution(Ipopt::SolverReturn status, int n, const double *x, const double *z_L, const double *z_U, int m, const double *g, const double *lambda, double obj_value, const Ipopt::IpoptData *ip_data, Ipopt::IpoptCalculatedQuantities *ip_cq) override
PlanningContext is the runtime context in planning. It is persistent across multiple frames...
Definition: atomic_hash_map.h:25
bool eval_grad_f(int n, const double *x, bool new_x, double *grad_f) override
bool eval_jac_g_ser(int n, const double *x, bool new_x, int m, int nele_jac, int *iRow, int *jCol, double *values)
bool eval_jac_g(int n, const double *x, bool new_x, int m, int nele_jac, int *iRow, int *jCol, double *values) override
void get_optimization_results(Eigen::MatrixXd *state_result, Eigen::MatrixXd *control_result, Eigen::MatrixXd *time_result, Eigen::MatrixXd *dual_l_result, Eigen::MatrixXd *dual_n_result) const
DistanceApproachIPOPTCUDAInterface(const size_t horizon, const double ts, const Eigen::MatrixXd &ego, const Eigen::MatrixXd &xWS, const Eigen::MatrixXd &uWS, const Eigen::MatrixXd &l_warm_up, const Eigen::MatrixXd &n_warm_up, const Eigen::MatrixXd &x0, const Eigen::MatrixXd &xf, const Eigen::MatrixXd &last_time_u, const std::vector< double > &XYbounds, const Eigen::MatrixXi &obstacles_edges_num, const size_t obstacles_num, const Eigen::MatrixXd &obstacles_A, const Eigen::MatrixXd &obstacles_b, const PlannerOpenSpaceConfig &planner_open_space_config)
bool eval_constraints(int n, const T *x, int m, T *g)
Planning module main class. It processes GPS and IMU as input, to generate planning info...
bool get_starting_point(int n, bool init_x, double *x, bool init_z, double *z_L, double *z_U, int m, bool init_lambda, double *lambda) override
bool eval_f(int n, const double *x, bool new_x, double &obj_value) override
bool get_bounds_info(int n, double *x_l, double *x_u, int m, double *g_l, double *g_u) override
Definition: distance_approach_interface.h:50
bool eval_g(int n, const double *x, bool new_x, int m, double *g) override
bool eval_obj(int n, const T *x, T *obj_value)
bool eval_jac_g_par(int n, const double *x, bool new_x, int m, int nele_jac, int *iRow, int *jCol, double *values)
static const VehicleConfig & GetConfig()
Get the current vehicle configuration.
Definition: distance_approach_ipopt_cuda_interface.h:55
bool check_g(int n, const double *x, int m, const double *g)
Math-related util functions.
bool get_nlp_info(int &n, int &m, int &nnz_jac_g, int &nnz_h_lag, IndexStyleEnum &index_style) override
void generate_tapes(int n, int m, int *nnz_h_lag)
bool eval_grad_f_hand(int n, const double *x, bool new_x, double *grad_f)
Some util functions.